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1. Introduction.

T.e first hialf of the title of this paper is borrowed from the heading "Nearby variables

with nearby laws," used by Dudley [4, p. 318] in his book to summarize the Strassen-

Dudley theorem: If F and G are distributions on a Polish space which are close in the

Prohorov metric, then these distributions can be realized on some probability space by

random variables X and Y with laws C(X) = F and C(Y) = G such that X and Y are

close in probability.

Combining this theorem with Lemma 2.2.2 below, we can restate it in the following

form: Let X be a random variable, defined on a rich enough probability space (fl, S, P),

and with values in a Polish space B. Let G be a law on B which is close to the law £(X)

of X in the Prohorov metric. Then there exists a random variable Y defined on (SI, S, P)

with law £(Y) = G, and such that Y is close to X in probability.

It is this form of the Strassen-Dudley theorem which is most effective in proving

strong approximation theorems. It will eliminate the need to use such well-known but

somewhat suspicious looking.phrases as: "Without changing its distribution we can redefine

the sequence of random variables on a new probability space on which there exists a

Brownian motion ... ," or "Without loss of generality (in the sense of Strassen) there

exists a Brownian motion," etc. In other words, in these strong approximation theorems

we will be able to keep the given random variables and probability space and we will

construct the approximating sequence on the same probability space.

There is a natural generalization of the Strassen-Dudley theorem to regular conditional

distributions. Let X, B and (Q, S, P) be as before and let Q be a countably generated sub-

a-field of S. Let G(. 1 9) be a regular conditional distribution on B, defined on (il, ,, P)

and measurable with respect to G. Suppose that with high probability the conditional law

C(X 1 9) of X given 9 is close in the Prohorov metric to G(. I C). Then there is a random

variable Y, defined on (St, S, P), with conditional law £(Y I C) = G(. C) a.s., and such

that Y is close to X in probability.

However, as it happens, conditional versions of the Strassen-Dudley theorem, are



much more useful if they include assertions about independence: Let F, g and 7H be sub-

u-fields of S with Q and N" being countably generated and Q V fl C .F. Suppose that with

high probability the conditional law £(X I Y) is close to G(- I Q), a regular conditional

distribution on B. Then there is a random variable Y, defined on (11, S, P) which is

independent of 7? given Q, has conditional law G(- I ) given !, and is close to X in

probability.

For 7X-valued random variables all these results can be rephrased in terms of charac-

teristic functions: If g is a characteristic function on V d which is close to the characteristic

function of X, then [2, Lemma 2.2], combined with the above version of the Strassen-

Dudley theorem, yields a random variable Y, defined on (I, S, P) which is close to X

in probability, and has characteristic function g. A conditional version of this result has

been known to the workers in this area for a long time. For it was recognized that the

proof of [2, Theorem 1] still works if there gk is replaced by a conditional characteristic
function gk(" I 9k-1) where {Qk, k _> 1} is a sequence of countably generated a-fields with

gk C Fk'. However, since there were no interesting applications apparent, this seemed a

rather useless generalization. As a matter of fact, in light of Remark 2.6 below, more often

than not it is.

The purpose of this paper is fourfold. First, we shall recast the conditional versions

of the above mentioned theorems in a form which makes them readily applicable and,

moreover, which contains most of the known approximation theorems. Second, we shall

discuss in some detail to what extent these results can be generalized. For example, we

will give a negative answer to the following question. If, in the above notation, with high

probability, C(X I .F) is close to G(. 1 !) in the Prohorov metric for some sub-u-fields

.F and !, is it always possible to construct a random variable Y with conditional law

C(Y 1 !) = G(. 1 !) which is close to X in probability? In our counterexample even

.F C Q is satisfied (Remark 2.3). Third, the utility of our results will be demonstrated

in a proof of a new strong approximation theorem for Hilbert space valued martingales.

When properly normalized these converge in law to a mixture of Gaussian distributions.

Finally, we present counterexamples to several reasonably sounding conjectures on the
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strong approximation of martingales. We believe that these together with our Theorem 7

bring the subject to a certain close.

The first strong approximation theorem for martingales can be found in Strassen's fun-

damental paper [12]. Let {z,,C4, n > 1} be a real-valued martingale difference sequence

with finite second moments. Suppose V . "<, E(4 I 2 -x) - oo a.s. and. that {x.}

satisfies a kind of Lindeberg condition. Using the Skorohod embedding theorem Strassen

[12] proved that if the underlying probability space is rich enough then the martingale can

be approximated with probability one by a standard Brownian motion scaled according to

the conditional variances of the given martingale sequence, i.e.

(1.1) Zx{V t} -. B(t) = o(td) a.s.
n>1

The utility of strong (or almost sure) invariance principles, as they are called, is clear.

If the error term in this approximation is small enough then many of the properties of

standard Brownian motion are shared by the given martingale sequence. For instance,

(1.1) implies the functional versions of the CLT and the LIL, but for the upper and lower

class integral test for the LIL an error term 0 ((t/ log log t) I) is needed.

Strassen's theorem was extended in [9] to Hilbert space valued martingales satisfying

a conditional Lindeberg condition slightly stronger than Strassen's. For simplicity consider
an *Rd-valued martingale difference sequence {Xk, C, k > i} with conditional covariance

matrices ak = E{ Xk4 I 4-1}- Set

An = S 0 k, V. = trace(An) = E E{Xik1 2 Ik-l}'
k<n k<n

In [9] (for an improvement see [11]) it is shown that if, in addition to the Lindeberg

condition,

(1.2) A,
vn

where A is a non-random positive semidefinite matrix, then (1.1) continues to hold. (For

the precise statement of condition (1.2), see (3.1.2) below.) But here, in contrast to (1.1),
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B(t) is an IZd-valued Brownian motion with mean zero and covariance matrix A. Of course,

if d = 1 then (1.2) is automatically satisfied with A = 1. In [9] an example was presented

to show that for d > 1 hypothesis (1.2) cannot be dropped if (1.1) is to hold.

Still assuming d > 1 and (1.2) we can rewrite the d-dimensional version of (1.1) in the

form

(1.3) z1V t}-A j 3 =o(dl) a.s.

where {y,n, n > 1} is a sequence of i.i.d. standard Gaussian 7Rd-valued random variables.

In Theorem 7, Section 3 below, (1.3) is established under hypothesis (1.2), but weakened

to allow A to be a random covariance matrix, measurable with respect to some 4, k> 1.

In other words, we shall construct a sequence {yn, n _ 1} of i.i.d. standard Gaussian Rlid

valued random variables, independent of A, such that (1.3) holds. On the other hand, as

we show by example in Section 3.3, without the assumption that A be 4k-measurable for

some finite k (1.3) need not hold.

The more general version of (1.3) with random A is still useful, because it shows, for

instance, that the martingale normalized by H- converges in law to a mixture of Gaussian

distributions. But it also implies, via a Fubini argument, the laws of the iterated logarithm

and their upper and lower class refinements.

As to the methodology we indicated above that Theorem 3 below is the basis for our

method. However, one might ask in this context whether or not other established methods,

such as the Skorohod embedding theorem, or rather a vector-valued version of it, could

possibly be used, instead of Theorem 3, to prove strong approximation theorems for vector-

valued martingales. In [8] we argued, no doubt very persuasively, that the canonical process

to embed a general "Rd-valued martingale in, must be an R1d-valued Gaussian process X

indexed by C E C, the class of positive semidefinite d x d matrices, with the following

properties:

(i) X(C) is-Gaussian with mean zero and covariance matrix C for each C E C,

(ii) X has independent'increments, i.e., the vectors X(C1 ), X(C + C2 ) - X(C),...

4



X(C1 + .. + C,, 1 + Cn) - X(C1 + + C, 1) are independent for all n > 1 for all

C1,... ,Cn EC.

After building a strong case in support of this process we showed that for d > 1 it

does not exist [8].
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2. Nearby variables with nearby conditional laws.

2.1. Statement of results.

For convenience we introduce some notation. U will denote a random variable (defined

on the underlying probability space) that is uniformly distributed over [0,1]. Also G(. 1 9)

will denote a regular conditional distribution, measurable with respect to the sigma-field

Q under consideration. If G(. I ) is such a distribution on jZd we define its conditional

characteristic function as

g(u JC) = J exp(i(u,x))G(dz 1Q)

Here (u, z) denotes the inner product of the vectors u and x.

Theorem 1. Let X be an 1Rd-valued random variable defined on some probability space

(fl, S, P) and let 9 be a countably generated sub-a-field of S. Assume that there exists

a random variable U that is independent of the a-field 9 V a(X). (This makes the prob-

ability space rich enough.) Let G(. j. C) be a regular conditional distribution on Rd. with

conditional characteristic function g( I 9) as defined in (2.1.1). Suppose that for some

non-negative numbers A, 8 and T > 108d,

(2.1.2) 1j<T ,exp(i(u,X)) I } -g(u'j C)Idu 5 A(2T)d

and that

(2.1.3) E{G((z : Ix> T)19)} <6.

Then there exists an td-valued random variable Y on (fl, S, P), with the following

properties:

(2.1.4) G(. 1 C) is a conditional distribution of Y given!C

and

(2.1.5) P(IX - rl > a) < a



where

(2.1.6) a = 16dT - logT + 2A T d + 261.

Theorem 1 is equivalent to the following theorem which is more convenient to apply.

Theorem 2. Let (fl, S, P) be a probability space and let Y,!g, Ii and C be sub-o-fields of

S such that 9 V H C Y" C C. Assume that Q and If are countably generated. Let X

be an Rd-valued random variable defined on (12, S, P) and measurable with respect to C.

Assume that there is a random variable U that is independent of C. Let G(. I Q) be a

regular conditional distribution on 1Rd with conditional characteristic function g(. J ) as

defined in (2.1.i). Suppose that for some non-negative numbers A, 8 and T > 108d

(2.1.7) jEIE{exp(i(uX)) I .F} -g(u 1 OIdu < A(2T)d

and that (2.1.3) holds.

Then there exists an TRd-valued random variable Y, defined on (f2, S, P), measurable

with respect to C V a(U) such that (2.1.5) and (2.1.6) hold and having the following

property.

G(. 1 9) is a conditional distribution of Y given 9 V X". In particular,
(2.1.8)

Y is conditionally independent of H given !.

Remark 2.1. Theorem 2 is an easy consequence of Theorem 1. Since ! V I C F we can

replace in (2.1.7) F by 9 V Rf. This follows from [2, Lemma 2.6J. We reinterpret G(. 1 9)

as G(. I ! V 7f). Thus we can apply Theorem 1 with ! V 7i in place of 9. Notice that g V 7-

is countably generated since and 'H are. We then obtain an Rd-valued random variable

Y satisfying (2.1.5) and (2.1.6) and such that G(. I C) is a conditional distribution of'Y

given C V 'H.

Remark 2.2. The following non-symmetric form of Theorem 1 may prove useful. Assume

the hypotheses of Theorem 1 with T > 0 (only) and let r > 0. Then the conclusion of

Theorem 1 remains valid with (2.1.5) and (2.1.6) replaced respectively by

P(JX - Y[ > r) < a(r,T) + 2A Td + 261
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where

3 ex -3r),i
(2.1.9) (r,t)< 3 r--.) exp(-ArT), ifr<T

3(2T)' exp (--T2), if r > T.

Theorem 2 can be reformulated in the same way. Proofs will be sketched in Section 2.2.3.

Remark 2.3. The condition 9 C " cannot be omitted. In fact we shall give an example of

a random variable X with characteristic function m, defined on ([0,1), B, A) and a family

{ge(" j 9), 0 < e < 1} of conditional characteristic functions with respect to a u-field g

with the following properties: For all w E [0,1) and all lul < I

Ira(u)- ge(U 19)1 _< 5

yet any random variable Y with conditional characteristic function E(exp(iuY I C) =
g,(u I ) is bounded by 2 and satisfies

P Ox - Yl =5")

Thus whereas conditions (2.1.3) and (2.1.7) hold, (2.1.6) does not. The example is as

follows: We choose X(w) = ri(w), the first Rademacher function (recall r (w) = 1 for
Sw < 2; r() = -1for < {,[,1),[0,), [-, 1)}, *r = {0,[0, 1)}, and

9g(u I C) = exp(i62u)cosu 0 W <

= exp(-ie2u) cosu <W <1

Now a random variable Y with conditional characteristic function g,(. 1 9) must be of the
form Y = c2ri + r where r 1 on some sets A and B, say, with A C [0, 2), B C [ ,1)

and A(A) = A(B) = and r E -1 on [0,1) \ (A U B). In other words, r is independent of

ri (and of C).

Remark 2.4. We conclude the dicussion of Theorems 1 and 2 with the following observation.

Let X and Y be random variables which are almost independent, say

(2.1.10) Eei'ux+i' Y - EeitxEeivYI
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is small for all Jul _< T, fvi 5 T; suppose that X is bounded. Then according to [2,

Lemma 2.2] (- Theorem 1 with ! = (, l)) there exist independent random variables X*

and Y*, close to X and Y respectively and such that C(X*) = £(X), £(Y*) = £(Y).

Unfortunately, in general, we cannot choose X* = X. In other words the following

assertion is false: There exists a random variable Y* independent of X, close to Y and with

C(Y-) =.(Y). Let 0 < e < 1, let r assume the values +1 and -1, each with probability

I and let X = er and Y = r. Then for all Jul < e-2 and all v, (2.1.10) is bounded by2

el. But any Y* independent of X, with £(Y*) =1£(Y), is also independent of Y and so

P(IY - fY*I -1) =

Repeated applications of Theorem 2 yield the following result. Note that the existence

of one random variable U independent of Vk>0 'k implies the existence of a whole sequence

{Uk, k > 1} independent of Vk>o ..Fk.

Theorem 3. Let {Xk, k > 1} be a sequence of random variables with values in 7Zdk, k > 1,

and defined on some probability space (f?, S, P). Let {.Fk, k >_ 0} be a non-decreasing

sequence of sub-ar-fields of S such that Xk is .Fk-measurable for each k > 1. Let {7k, k > 1}

be a sequence of countably generated u-fields with lik C .Fk, k > 1, and let 9 C rFo

be a countably generated u-field. Assume that there exists a random variable U that is

independent of Vk>o 'Fk. For each k > 1, let Gk(" ) be a regular conditional distribution

on TjZdk, measurable with respect to g, and with conditional characteristic function

gk(u 1) = J exp(i(u,z))Gk(dx IC), u E T~dk.

Suppose that for some non-negative numbers Ak, 6 k and Tk > 1O8dk

4 15T,, E lE{e ftp(i(u,XXk)) I .17k-1 - gk(u I )du 5 Ak(2Tk)dk

and that

Then there exists a sequence {Yk, k > 1} of lZdA.-valued random variables, defined on

(12, S, P) with the following properties:

(2.1.11) Y. is .Fk V u(U) measurable for each k > 1,

9



Gk(" I Q) is a conditional distribution of Yk given Q V W"k-1,
(2.1.12)

in particular, Yk is conditionally independent of "k-i given Q,

and

P(IXk - Yk >I ak) <_ ak

where

ak = 16dkT; "1 logTk + 2AkTk k + 26, k > 1.

In particular, if we choose inductively li"k = a(Y,... ,Yk), k > 1 then {Yk, k > 1}

can be chosen to be a sequence of random variables conditionally independent given Q.

Remark 2.5. If g can be chosen to be the trivial a-field then, except for the exponent 2

on 6k, Theorem 3 reduces to [2, Theorem 1]. In particular, {Yk,.k > 1} is a sequence of

independent random variables with C(Yk) = Gk, k >_ 1.

Remark 2.6. We want to spare the reader a complete report on the pitfalls that general-

izations of Theorem 3 may have, except for this one: Let {k, k > 1} be a sequence of

countably generated a-fields 9k C Yk, k _> 1. The proof of Theorem 3 still works if we

assume that Gk and gk are gk-l-measurable instead of Q-measurable. If, in addition, we

set *Hk := a(Y,... ,Yk) then the conclusion of (2.1.12) reads:

Gk(' 9 k-1) is a conditional distribution of Yk given

a(Y,... , Yk-1) V 9k-1, in particular, Yk is condition-

ally independent of Y1,... , Yk-1 given 9k-1, k > 1.

Unfortunately, in general, this does not specify the joint distribution of the sequence

{Yk, k >_ 1}, as the followiig example shows. In comparing this with Remark 2.5 this

paradoxically seems to say that more information in fact yields less information. Let

No, N1, and N2 be independent standard normal random variables, let 0 < p < 1 and

set Y := pNo + (1 - p2)JN, Y2 = No + N2 . Let 9 = a(No). Then the conditional

distribution G2(" 1 9) of Y2 given 9 is normal AN(N 0 , 1). The conditional distribution of Y2

given 9 V a(YI) is also A(No, 1). Thus Y2 is conditionally independent of Y given !. Yet

this does not determine the joint distribution of Y and Y2 since p is arbitrary.

10



Theorems 1, 2, and 3 apply to a wide variety of dependence structures including ran-

dom variables which satisfy a strong mixing condition. In the following three theorems the

dependence relation is more restrictive than the one implicit in (2.1.7), but the random

variables are allowed to assume values in Polish space. For earlier versions see [11, Theo-

rem 4] and its history given there. Given a Polish space (B, m), a set A C B and p > 0

we write AP] = {z : inf{m(x, y) :Y E A) _< p}. As before, U is a random variable, defined

on the underlying probability space, that is uniformly distributed over [0,1]. Moreover,

G(. I ) will denote a regular conditional distribution on B, the Borel sigma-field on (B, m),

such that G(. J Q) is measurable with respect to the sigma-field 9 under consideration.

Theorem 4. Let X be a random variable, defined on some probability space (SI, S, P) and

with values on some Polish (B, m). Let Q be a countably generated sub-sigma field of

S and assume that there exists a random variable U that is independent of the u-field

G V a(X). Let G(. I C) be a regular conditional distribution on B and.suppose that for

some non-negative numbers a and P

(2.1.13) E sup {P(XE A I G(AO] I) <
AES

Then there exists a random variable Y with values in B, defined on (fl, S, P) and satisfying

(2.1.4) and

(2.1.14) P{m(X, Y) > a} < /.

Remark 2.7. Notice that here as well as in the following two theorems the constants are

sharp. Moreover, if in (2.1.13) 9 is the trivial a-field then Theorem 4 'reduces to the

Strassen-Dudley theorem.

Theorem 4 is equivalent to the following theorem.

Theorem 5. Let (SI, S, P) be a probability space and let .F, 9, Wt and Z be sub-sigma-fields

of S such that Q V 7 C " C C. Assume that 9 and *" are countably generated. Let X be

a random variable, defined on (11, S, P) and with values in some Polish space (B, in), and

measurable with respect to C. Assume that there exists a random variable U independent

of C. Moreover, let G(. I C) be a regular conditional distribution on 8 and suppose that

11



for some non-negative numbers a and

Esup {P(X E A I) G(Aal I )} <1.
AE

Then there exists a random variable Y with values in B, defined on (S2, S, P), measurable

with respect to £ V a(U) and such that (2.1.8) and (2.1.14) hold.

Repeated applications of Theorem 5 yield the following result.

Theorem 6. Let {Bk, ink, k > 1) be a sequence of Polish spaces, let Bk denote the Borel

field of Bk, and let {Xk, k > 1} be a sequence of random variables, defined on (SI, S, P)

and with Xk assuming values in Bk. Let {Y'k, k > 0} be a non-decreasing sequence of

sub-u-fields of S such that Xk is Fk-measurable for each k > 1. Let {k, k > 1} be

a sequence of countably generated a-fields with 1Hk C J'k, k > 1, and let g C o be a

countably generated u-field. Assume there exists a random variable U that is independent

of Vk>.-k. For each k > 1, let Gk(' I ) be a regular conditional distribution on Bk,

measurable with respect to !. Suppose there exist two sequences of real numbers {ak}

and {flk} such that for all k > 1

E sup {P(Xk E A J.'k-i) - Gk(A a ] 1!9)} < Ilk.
AEUS

Then there exists a sequence {Yk, k > 1} of random variables, defined on (fl, S, P) and

with Y&' assuming values in Bk such that (2.1.11) and (2.1.12) hold. Moreover, for all

k l,

P{Mk(Xk,Yk) > ak} Pk-

In particular, if we chobse k = a(Y,... Yk) for k > 1 then {Yk, k > 1} can be

chosen to be a sequence of random variables conditionally independent given 9.

Remark 2.8. In a recent paper [7) Eberlein embarks on a project similar to ours, namely

to establish conditions for the approximation of a given sequence {Xk, c > 1} by another

(possibly dependent) sequence {Yk, k > 1} of prescribed distribution. In our view Eber-

lein's attempt has failed. For he imposes conditions on the sequence {Xk, k > 11 so strong

that these guarantee that {Xk, k >_ 1} can be approximated by a sequence {Yk, k > 1}

12



of independent random variables, a case which is entirely in the domain of attraction of

previous work (Section 2.4).

2.2. Proof of Theorem 1.

The following lemma gives a random variable Z for which G(. I g) is the conditional

distribution of Z given !. Thus from the class of all such random variables Z we are to

choose one, say Y, which in addition, satisfies (2.1.5) and (2.1.6).

Lemma 2.2.1. Let (SI, S, P) be a probability space with a sub-u-field g C F. Let G(-, w) be

a g-measurable, regular conditional distribution on a Polish space S. Let U be a random

variable uniformly distributed over [0,1] and independent of g. Then there exists an S-

valued random variable Z such that G(., w) is a regular conditional distribution of Z given

Proof. Without loss of generality we can assume that S = [0,1] with the usual metric and

Borel structure. (See e.g. the proof of [5, Lemma 2.11].) For 0 < u < 1 define

G-'(u,w) = inf{t: G(tw) > u}.

Then G- I is jointly measurable since the map u --, G - 1 (u, w) is left-continuous and since

for fixed u and t

{w : G_(uw) t} = {w: G(tw) u} Eg.

The desired random variable is given by

Z(w) := G-1 (U(w), w).

We will also make extensive use of the following two lemmas.

Lemma 2.2.2. ([5, Lemma 2.11]). Let S and T be Polish spaces and Q a law on S 0 T,

with marginal p on S. Let (11, S, P) be a probability space and X be a random variable

on fl with values in S and law (X) = p. Assume that there is a random variable U on n,

independent of X, with values in a separable metric space V and law £(U) on V having no

atoms. Then there exists a random variable Y on S with values in T and £((X, Y)) = Q.
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Lemma 2.2.3. ([2, Lemma Al] [5, Lemma 2.13]). Let X, Y and Z be Polish spaces.

Suppose/i is a law on X 0 Y and v a law on Y 0 Z such that/ and v have the same

marginal on Y. Then there is a law on X 0 Y 0 Z with marginals y on X 0 Y and v on

Y9Z.

Combining these two lemmas we obtain

Lemma 2.2.4. Let R, S and T be Polish spaces and let v be a law on S 0 T. Let (Q7, S, P)

be a probability space and let X and Y be random variables with values in R and S

respectively, such that C(Y) is the marginal of v on S. Assume that there is a random

variable U on (SI, S, P), uniformly distributed over [0,1] and independent of Y. Then there

exists a random variable Z on (11, S, P) such that £((Y, Z)) = v.

Combining Lemma 2.2.2 with [2, Lemma 2.2 and the Strassen-Dudley theorem [4,

Theorem 11.6.2] we obtain

Lemma 2.2.5. Let X be a random variable with values in Rd and characteristic function

f. Let G be a distribution on Zd with Fourier transform g. Assume there exists a random

variable U independent of X. Then there exists a random variable Y with distribution G

such that

P(IX - YI >a) <a

where
a=()d If(u) g(u) Idu + (x jx1> + 6dT'og

T JIUj<T 2o

provided that T > 108d.

2.2.1. The discrete case.

In this section we make heavy use of the ideas developed in [2, Section 2.3.1]. We

first prove Theorem 1 under the additional hypothesis that Q is generated by a countable

partition.

Let c > 0 to be chosen suitably later. By (2.1.2), Fubini's theorem and Markov's

inequality

(2.2.1) 1 [E{exp(i(u,X))19} - g(u I g)Idu < c(2T)d

14



except on a set A1 E Q with P(A 1 ) < A. Similarly, by (2.1.3)

(2.2.2) G(x: Ixi >-T) <2

except on a set A2 E g with P(A 2 ) < 62. Put /= A+ 6 and let A=AIUA 2 . Then the

exceptional set A E g and has probability P(A) < q.

Let D be any of the countably many atoms of g and keep it fixed. Let S(D) denote

the trace of S on D and define PD by

(2.2.3) PD(E) = P(E I D), E E S(D)

Note that X1D and UlD are still PD-independent and that the PD-distribution of UlD is

still uniform. On D the conditional characteristic function

Eexp(i (u,X)) I !9} = 1 D exp(i(u,X))dP = f(u), say,E {xpi~,X) a =P(D)

is a non-random function in u and can be interpreted as the Fourier transform of the PD-

distribution of X. Similarly, on D, the conditional characteristic function g(u I g) as well

as G(. 1 !) are non-random. We denote them by g(u) and G(.) respectively.

Thus, on the set D, either both (2.21) and (2.2.2) hold, in which case D C Ac , or

else one of these two conditions fails, in which case D C A. Assume first that D C Ac.

Then by (2.2.1)-(2.2.3)

fll<T If(u) - g(u)du < (2T)d

and

G(x: Ix > 2T) <6.

Hence by Lemma 2.2.5 there exists a random variable Y on (D, S(D), PD) such that

(2.2.4) PD(Y E B) = G(B), B E R d

and that

(2.2.5) PD(IX- YI > P) <5 if D C AC
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where

(2.2.6) 8 = 16dT - ' log T + eT 2d + 6*.

If on the other hand D C A we choose Y with PD-distribution G but arbitrary otherwise.

Thus

(2.2.7) P (IX - Y[ > 0) __. 1 if D C A.

As D runs through all the atoms of Q we obtain a random variable Y defined on

the whole space (fl, S, P) such that the conditional law C(Y 1!) = G(. 1 Q). Moreover,

summing the relations (2.2.5) and (2.2.7) over all D E ! we obtain by (2.2.4)

Pa[x - Y[ > 0): P-f + q7.

We choose c = AIT - d and obtain in view of (2.2.6) a result slightly stronger than

claimed in (2.1.5) and (2.1.6).

2.2.2. The general case.

Since Q is countably generated there exists a real-valued random variable W such that

! = a(W). For n = 1, 2,... let Wn denote the discrete random variable defined by

W" := E k2-"1{k2-n < W < (k + 1)2-n}
-oo<k<oo

and let !9 = a(Wn). Let G(. I 9n) denote the g,-measurable regular conditional distribu-

tion defined by

G(B Ig) = E{G(B 19) 1 9n} a.s.

for B E Rd. (Note that the verification of this as well as of several of the following

claims is particularly easy if Lemma 2.2.1 is used.) Let g(u I Q) denote the corresponding

conditional characteristic function

g(u I 9n) = exp(i(u,x))G(dx I 9n) = E{g(u 1 !) 1 ,..

16



Since G. C C, [2, Lemma 2.61 shows that conditions (2.2.1) and (2.2.2) are satisfied with

!,. taking the place of G. By the result of Section 2.2.1 there exists an R.V-valued random

variable Y. such that

G(. 1 C9) is a conditional distribution of Y. given g,

and

(2.2.8) P(IX - Y,.I > a) < a

where a is given in (2.1.6).

We now show that the sequence {C(W, Y,), n > 1} of joint laws of W and Y. converges

weakly as n -- oo. To see this first note that for j = 0, ±1, ±2,..., and k = 1, 2,... the

events

{W E ['2-k, (j + 1)2 -k)} E Gk.

Thus for each dyadic interval Ik of rank k, for all n > k and for all B E 1Zd

P(W EIkYn EB)=j G(B I 9n)dP
(2.2.9)

W I) G(B I G)dP.{wEIk }

This proves the claim. It follows that the sequence {4 (X, W, Yn), n > 1} is a tight family

of probability measures on TR2d+1. Hence there exists a subsequence {n'} such that

,C(X, W, Y,) =*Q

for some probability measure Q on IZ2d+l. Since (X, W) is a marginal of Q it follows from

Lemma 2.2.2 that there exists an 1Vd-valued random variable Y such that £(X, W, Y) = Q.

(2.2.9) implies that G(. I G) is a conditional distribution of Y given W, and (2.2.8) implies

P(IX - YI > a) <_ liminfP(IX - YnI > a) 5 a.

2.2.3. Proof of Remark 2.2. The following lemma and its proof are minor modifications

of [2, Lemma 2.2] and the proof given there.
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Lemma 2.2.6. Let X be an R1?-valued random variable with distribution F and characteris-

tic function f. Let g be a characteristic function on VA. Moreover, suppose that there is a

random variable U, uniformly distributed over [0,1] and-independent of X. Let r and T be

positive numbers. Then there exists a (lVd-valued) random variable Y with characteristic

function g such that

P(IX - YI > r) < (1)d If(u) - g(u)Idu + F(Ixl _ 1T) + a(r, T)Ir .<T

where c(r, T) is defined in (2.1.9).

Proof. We follow the proof of [2, Lemma 2.2] until [2, (2.2.4)]. If G denotes the distribution

associated with g then by the argument proving [2, (2.2.1)] we obtain

F(B) <5 G(Br) + <TT) f(u) -g(u)ldu-+ F(I=Ij > 'T)

+ H(IzI _ T) + H(IxI > 1r) + (T)dj _ h(,)ld

for all Borel sets B C *d. We choose H as on [2, p. 36] with a 2 = if r < T and o"2 =

T - 2

if r > T. We then apply the Strassen-Dudley theorem and Lemma 2.2.2 and obtain the

result.

To finish the proof of Remark 2.2 we follow Section 2.2.1 until (2.2.4). We now apply

Lemma 2.2.6 and obtain, instead of (2.2.5)

P(JX - YI) > r,D) < P(D)(T2d + Al + a(r,T)) if DC Ac.

As in Section 2.2.1 we sum over all D E Q, choose c = AIT - d and obtain the result. The

changes in Section 2.2.2 are minor.

'2.3. Proof of Theorem 4.

Again we first prove Theorem 4 under the additional hypothesis that G is generated

by a countable partition. The proof makes use of sketches of proofs of unconditional results

given in several earlier papers (See [10, Theorem 3.4] and its history given there).
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Let D be any of the countably many atoms of g and note that on each D both

P(X E A[)P(X E AID) and G(AeJ I )-G(AcJ ID),

are non-random. Hence we can rewrite (2.1.13) in the form

(2.3.1) <P(D)(D) : 6
DEC

where we set

(2.3.2) e(D) = sup(P(X E A I D) - G(Aal I D)).

AE

In the context of [10, Theorem 3.4] the usefulness of this observation for obtaining sharp

constants was pointed out to us by Erich Berger [1]. We thank him for this remark.

For the moment keep D fixed. We shall construct Y on each D separately. Define for

al A E B

PI(A) = P(X E A I D) and P2(A) = G(A I D)

Then by (2.3.2) with c = e(D)

Pi(A) :P 2 (A*)+e, for all A EB.

Hence by the Strassen-Dudley theorem [4, Theorem 11.6.2] there exists a probability

measure Q = QD on B ® B with marginals P1 and P2 such that

QD{(X,y) : m(XY) > a} _

Hence by Lemma 2.2.2 there exists a random variable Y on (D, S(D), PD) such that

£(X, Y) = QD, where S(D) and PD are defined in (2.2.3) above. It follows that

(2.3.3) P(m(X, Y) > a, D) < e(D)P(D).

As D runs through all atoms of ! we obtain a random variable Y defined on the whole

space (SI,,S,P). We sum (2.3.3) over all sets D and obtain, in view of (2.3.1)

P(m(X,Y) > a) < E P(D)e(D) </3.
DEC
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We also note that (2.1.4) holds since P2, the second marginal of QD, is the PD-distribution

of Y. This proves Theorem 4 in case that g is generated by a countable partition.

The proof of the general case can be easily modeled after Section 2.2.3.

2.4. Proof of Remark 2.8.

We concentrate only on one of Eberlein's results, namely on [7, Theorem 2]. We first

prove the following lemma.

Lemma 2.4.1. Let X and W be random variables defined on some probability space (a, S, P)

and with values in a Polish space B. Let .F and G be sub-a-fields in S and assume that F

is non-atomic. Suppose there exist two positive numbers e and A such that for each pair

of sets D E .F and E E 9 with P(D) = P(E) the following relation holds:

(2.4.1) P(X E AID)5 P(W E A' IE) + A, for all A E B.

Here B denotes the Borel-field of B. Then with probability one

(2.4.2) sup {P(W E A i ) - P(W E A2,])} < 3A.
AEB

Proof. Let E E 9 be any set and let a := P(E) > 0. Choose integers n > 1 and 0 < k < n

such that 0 < a - A < -1 < a. Partition 2 inton sets D1,... ,D, E Fwith P(Dj) = .,

1 < j < n. For any subset M of k integers j, 1 < j < n choose a set D E F disjoint

from UEM Dj with P(D!) = a - k. By a well-known argument (2.4.1) implies

P(W E A IE)5 _P(X E Ael I D) + A, for all A E,6

and so with D = UiEM D ,U D*f

(2.4.3) P(W E AE) < 1 P(X E A"I,Dj) + 2aA, A E 8
iEM

We sum (2.4.3) over all (n) possible subsets M and obtain

20



Dividing by a(") and applying (2.4:1) with D = E = 1, and A'] instead of A, we get

(2.4.4) P(W E AIE)< P(W E A2e]) + 3A for all A E B.

Now fix A E B and let E = {P(W E A I C) - P(W E A26]) > 3A}. Then (2.4.4) implies

P(E) 0. Since the supremum on the LHS of (2.4.2) needs to be extended only over

countably many sets A E B we obtain the result.

We now recall Eberlein's [7, Theorem 2]: Let {Bk, ink, k _ 1} be a sequence of Polish

spaces, let {Xk, k > 1}, {Wk, k > 1} be two sequences of random variables, defined on

(SI,S,P) and with Xk and Wk assuming values in Bk, k > 1. Let {.Yk, k > 1} and

{ Ck, k > 1} be two non-decreasing sequences of sub-a-fields of S and assume that Fk is

non-atomic, Xk is Fk-measurable and Wk is Qk-measurable for each k > 1. Suppose there

exist sequences {ek, k > 1}, {Ak, k > 1} of positive numbers such that for each pair of sets

D E hk-, E E Qk-I with P(D) = P(E),

(2.4.5) P(XkEAID)5P(WkEAe]IE)+Ak forallAE k

Here Bk is the Borel a-field over Bk. Let us finally assume that there exists a random

variable U, uniformly distributed over [0,1] and independent of JYoo V Q0,. Under these

assumptions Eberlein [7] proves that there exists a sequence {Zk, k > 1} with the same

law as {Wk, k >_ 1} such that

(2.4.6) P{mk(Xk, Zk) _ 36k} :5 Ak, k> 1.

What we claim is that under these hypotheses one can do better. Namely, one can

approximate {Xk, k > 1} by a sequence {Yk, k > 1} of independent random variables with

4(Yk) = £(Wk), for each k > 1.

To see this note that by Lemma 2.4.1 we have with probability 1

P(Wk E A !gk1)<P (Wk EA2k)+3Ak, AEBk

and hence by Theorem 6 with 7 k-I = a(YI,... ,Yk-.),k > 1 and G, the trivial a-field,

there exists a sequence {Y*, k > 1} of independent random variables with C(Yk,) =(Wk),

k > 1 such that

(2.4.7) P{mk(Yk*, Wk) > 2Ck} 3Ak, A E Sk.
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As a matter of fact [10, Theorem 3.4] would in essence yield the same conclusion.

Let B = @Bk. Consider the law £({ Wk}, {Y;}) on B ® B. Since £({Wk}) = £({Zk})

we obtain from Lemma 2.2.4 a random variable {Yk, k >_ 1} such that £({Zk}, {Yk}) =

L({Wk}, {Yk*}). Hence by (2.4.6) and (2.4.7) we obtain

(2.4.8) P{mk(Xk,Yk) > 5ek} 5 4Ak, k > 1.

Since £({Yk}) = £({Yk*}) the sequence {Yk, k > 1} is a sequence of independent

random variables with £(Yk) = £(Wk), k > 1.

We would like to add in passing that the existence of a sequence {Yk, k >_ 1} of inde-

pendent random variables approximating the sequence {Xk, k > 1} and satisfying (2.4.8)

can be derived directly and more easily from (2.4.5) by using Theorem 6 or [10, Theo-

rem 3.4] under the additional hypothesis that one of the gk's contains sets of arbitrarily

small measure. The argument is similar to the one given in the proof of Lemma 2.4.1.

22



3. A strong approximation theorem for Hilbert space valued
martingales.

3.1. Statement of theorem.

Let {z.,£.,n > 1} be a square integrable martingale difference sequence defined

on some probability space (SI, S, P) and with values in a real separable Hilbert space

(H, (-,.), I- ). Suppose that (0, S, P) supports a random variable U, uniformly distributed

over [0,1] and independent of {z,, n > 1}. We denote the conditional expectation operator

E(. I n-1) by En(.). Let an be the conditional covariance operator of X, given £,-1,

defined by

an(u) En((u, Xn)Xn), uE H

and let

tr(an) Z O(n(ei),ei) = EnIxnI2

i>1

be its trace. Here {ei, i > 1} is a complete orthonormal basis for H. We write

An : '

i<n

and put

Vn := tr(An) = E, Ix 12.
i<n

For each w E SI let M, be a mean zero measure on H such that fH Ix12 p,(dX) < oo.

Moreover, suppose that the map T: H x SI -- H defined by

T(u, w) = JH (U )x, d) u E H,w E SI

is measurable. We call T a random convariance operator. We define further a seminorm

f1 j1 on linear operators B H -- H by

IIBII = sup I(B(u),u)I
uEH,1ujj=I

and observe that if T is a random covariance operator then IITII is a random variable.
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With this notation we have the following extension of [9, Theorem 1] and of [11,

Theorem 2].

Theorem 7. Let {Xn, 4n, n > 1} be a square-integrable martingale difference sequence with

values in a real separable Hilbert space H of dimension d < 0o, and defined on (n, S, P).

Let f be a non-decreasing function with f(z) - oo as z -+ oo, and such that f(A(2L W) isz

non-increasing for some a > 50d. (If d = oo we interpret this last condition to mean that

it holds for all large a.) Suppose that Vn -+ oo a.s. and that

(3.1.1) D:= E {Ix121 {Ixn 2 > f(V)} /f(V)} < co.
n>1

Moreover, suppose that there exists some covariance operator A, measurable with

respect to 4 for some k >_ 0, and some 0 < p _< 1 such that

(3.1.2) Esup{[IAn - AVn I[/f(Vn)} < oo.
n>1

Finally, let I be an arbitrary non-singular, non-random covariance operator.

Then there exists a sequence {Yn, n _ 1} of i.i.d. Gaussian H-valued random variables,

defined on (fl, S, P), with mean zero and covariance operator I, and independent of A such

that with probability 1

1Z{V <t}(Af (t-i)tP ,) if d <

n,<t (o((tloglogt)*) if d =oo.

Remark 3.1. For d = 1 our result is somewhat weaker than Strassen's [12] because our class

of functions is somewhat smaller. Moreover, instead of (3.1.1), Strassen only assumed the

almost sure convergence of the series in (3.1.1) with E(.) replaced by E(. I £n-).

Remark 3.2. Collecting the probability bounds before the Borel Cantelli lemma is applied

we can obtain for d < o

P{~z1V, i)AiZ!tdfwe)owk7 <(f(t)t)T57

Here {,,, m .1} is a sequence of i.i.d. AK(OI) random vectors independent of A, and I

denotes the identity matrix.

24



Remark 3.3. Influenced by Livy's proof of the CLT for martingale differences (See e.g. [3,

498-501]) one of our initial goals was to establish strong approximations of the type

(3.1.3) Zxa ck~Yk =o((V~loglogVn,)i) a.s.
k<n k~n

or

(3.1.4)1 X z1{Vk :5 t} - Z t~yk1{~ 14 t = o ((t log 1ogt)1) a.s.

where {Yk, k > 1} is a sequence of i.i.d. standard normal random variables, independent of

the sequence {uk, k 1}. But even if d = 1 neither (3.1.3) nor (3.1.4) can hold in general.

To see this let {rk, k _ 1} be the sequence of Rademacher function, i.e., P(rk = ±1) = ,1

4 -" u(r,... ,rk) and Xk = (1 + rk-1)rk. Then ak = E( 1 4k1) = 1 + rk-1. Write

as above V,, = ak. If {ykl is independent of {o'k}, then {yk} is also independent of

{rk} and so

(3.5 x- 4 k k=7k(rk Yk), k 2!1

is a martingale difference sequence with respect to the natural filtration. Hence (3.1.5)

satisfies the LIL with quadratic variation 2V,,. This contradicts both (3.1.3) and (3.1.4).

Of course if d = 1 we obtain for some i.i.d. N(0, 1) sequence f{y,j > 1)

ZXk{Vk :5 t} - E j= o (*) a.s.
j<_t

by Strassen's theorem [12].

[11, Theorem 1] and, a fortiori, [6, Theorem 1] easily extend to the case of random

covariance operators T.

Theorem 8. Let {j,j _ 1) be a sequence of random variables, defined on (12, S, P), with

values in a real separable Hilbert space H of dimension d < oo and with

sup EI~jlj2+ < 00
j>1
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for some 6 > 0. Let U be a random variable independent of { ,,j > 1} and let {Mj, j > 1

be a non-decreasing sequence of u-fields such that Cj is Mj-measurable for each j > 1.

Denote
m+n

Sn(M) Z Ci
j=m+1

and for m > 0 and n > 1 define the conditional covariance operators C(n, m) by

C(n, m;u):= E{(uS(m))S.(m) I Mm}, u E H.

Suppose that there exist 0 > 0 and p > 0 such that uniformly in m > 0

EjE(Sn(m) I Mm)l' < n(I-O)P

and suppose that there exists a (possibly random) covariance operator T, measurable with

respect to some Mj, j > 1 such that uniformly in m > 0

EIIC(n, m) - nT1 < n ' - .

Finally, let I'be an arbitrary non-singular, non-random covariance operator.

Then there exists a sequence {y,, n > 1} of i.i.d. Gaussian H-valued random variables,

defined on (11, S, P) with mean zero, covariance operator I, and independent of T such

that with probability 1

(T-1) 1 j 0ifd<oo

j:5nj: - o((nloglogn)*') ifd=oo.

Here A > 0 is a constant depending only on d, 6, p and 8.

3.2. Proof of Theorem 7.

The proof of Theorem 7 follows in essence the proof of [9, Theorem 1] except that for

the construction of the random variables {(y,j >- 1) Theorem 3 instead of [2, Theorem 1J

will be applied. Throughout the proof we shall use the same notation as in [9], wherever

possible.

We first observe that there is no loss of generality in assuming that A is Co-measurable.
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3.2.1. The case d < 0o.

Except for one minor change we follow [9, Section 2.1-2.3]. Starting with [9, (2.1)] we

replace d by
dd :_ I

p

This will compensate for the fact that our hypothesis (3.1.8) is weaker than the corre-

sponding [9, (1.5)1. The changes in [9, Section 2.3] precipitated by this weakening of the

hypothesis [9, (1.5)] have been dealt with in [11, p. 230 to p. 231, line 4]. In this context

it is perhaps helpful to observe that the argument in [9, (2.11)] requires no change, be-

cause A is assumed to be 40-measurable. Hence [9, Proposition 1] remains valid with the

appropriate interpretation of A: As k -- oo

(3.2.1) sup E E{exp(i(u, Zk)) I 'k -exp (- (, Au)) I«k
IUI<k2

Remark 3.4. For the proof of (3.2.1) the hypothesis that A be Lo-measurable is not needed.

As a matter of fact the same argument shows that if 9k denotes the o-field generated by

{jaj , r(k)} then

supk E IE{exp(i(u, Zk)) I k-}- E {fexp (~uAu)) IQk-I} < k-sdI-I<k2

This together with some routine calculations imply the CLT with a mixture of Gaussian

distributions as limit.

We now apply Theorem 3 to the sequence {Xk, k _ 1} = {Zk, k _ 1}, Tk = kt,

9 = a(A) and gk(u IC) = exp(- (u, Au)). We obtain sequence {Y,k >_ 1} of Rd.-valued

random variables, defined on (fl, S, P) with the following properties:

Conditional on A the sequence {Yk, k >_ 1} is a sequence of independent random

variables with (conditional) characteristic function exp(- (u, Au)) such that

P(IZk - YkI I_. ak) _ ak

with

ak <k-1 .
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Next we apply Lemma 2.2.4 with the random variables

X ={Zk,k > 1}, Y = (A,{Yk,k > 1})

and the law

v= £ ({Ni,j 1};(A, {AhkI > Ni, k > 1})
j=t&- 1+1

defined on the appropriate Polish spaces IZdo, IZd2 0 lZdoo and 7 doo. Here t k and hk are

defined in [9, (2.1)] and f{Nk, k > 1} is a sequence of i.i.d. standard Gaussian 1Zd-valued

random variables, independent of A. Since the marginal on jd 2 0 7gdoo of V,

~(A,{fAl h;I ZNj,k > 1

equals £(Y) there exists a random variable Z = {yj,j _ 1}, defined on (fl,S,P) with

1d-valued, i.i.d. standard Gaussian components yi, independent of A such that for all

Ak>

(3.2.2) P -AWYh ! I/i >ak) <cxk.
j=tAk.-.+l

Summing these relations over k = 1,... ,M we obtain the analogue of [9, (2.20]. The

remaining changes in [9, Section 2.4] are routine.

We note that if A invertible the proof of (3.2.2) can be simplified, because it is easily

checked that {A-IYk, k > 1) is a sequence of i.i.d. standard Gaussian 1Rd-valued random

variables.

3.2.2 The case d= oo.

The proof of Theorem 7 in the infinite-dimensional case is almost identical to the proof

given in [9, Section 3], as ammended in [11, pp. 231-232] to take care of the weakened

hypothesis (3.1.8). The idea behind the proof is this: One approximates the H-valued

martingale difference sequence z be a finite dimensional martingale difference sequence

7rkX, of ever increasing dimension dk, which, by the way, will be random. One then applies

the results of Section 3.2.1 to Wkz,, to construct finite dimensional approximations of 7k'X,
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by mixtures of Gaussian random variables. Finally, a bounded law of the iterated logarithm

for x,, - rkX,, is proven to show that the approximation errors are negligible.

As noted above, this program has been carried out in [9, Section 3] and [11, pp. 231-

232]. There are three items which need attention. First, from the middle of [9, p. 247] on

a factor hk' is missing. Second, in three lines in the lower half of [9, p. 247] the symbol

QM erroneously got omitted. (Recall that II-II denotes the seminorm defined in [9, p. 232,

line 8] and not the operator norm.) Third, for random A the estimate of III in [9, p. 248,

line 4] needs proof In other words, we need to show that for all w E fl

(3.2.3) IIQkAQkll -- 0

as k -- oo. There are at least two ways to see this. By [13, p. 326, Remark] we can

approximate A (for each fixed w) in the operator norm by a finite dimensional operator

on H with finite-dimensional domain. Hence (3.2.3) follows. We thank Loren Pitt for

this remark. But (3.2.3) also can be proved by observing that for each fixed w, A is the

covariance operator of some square integrable vector , say, and that

IIQkAQkII _ EjQk 12  0.

3.3. A counterexample.

We shall show now that in Theorem 7 the hypothesis that A is 4k-measurable for

some k > 1 cannot be omitted.

Let ([0,1), B, A) be the unit interval with Lebesgue measure and let {r,,, n > 1} be

the sequence of Rademacher. functions, defined on [0,1). Let Co be the trivial a-field and

let Z. be the a-field generated by the dyadic intervals of rank 2n. For n > 0 define 2 x 2

random matrices

1 -2-" if k2-n 5<t < (k + 1)2- 1,  0:_< k < 2".

Set
Xn = .1 ( r ' -r  n>l

r2n
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Then fx., 4, n > 1} is a 2-dimensional martingale difference sequence. Now

k<n

has trace Vn = tr An = n. Thus for all 0< w < 1 the limit

A := lim An/Vn = W -0,

exists. As a matter of fact both conditions (3.1.7) and (3.1.8) are satisfied with f(x) = x

Suppose there exists a sequence {yk, k > 1} of i.i.d. 2-dimensional standard Gaussian

random variables, independent of A such that with probability 1

<xk-Ail-yk =o((nloglogn)), n -. oo
k<n k<n

or what amounts to the same

Ai Xk k 0((n log logn)*) n--+ oo.

k<n k~n

Since A generates B, the sequence {yL, k > 1} is independent of {Zk, k > 1} and thus

of {A- xk,k > 1}. Hence we have by a Fubini type argument that for some sequence

{a,, n >_ 1) of constant 2-dimensional vectors

E5 k-a =0 ((nloglogn)i) a.s.
k<n

But this must also hold for any independent copy {t4, k > 1} of {Yk, k > 1) and so

F,(k- Yk*) = 0 ((n log log n)I) a.s.k<n

This contradicts the classical LIL.

30



References

[1] Berger, E., personal communication (1982).

[2] Berkes, I. and Philipp, W., Approximation for independent and weakly dependent

random vectors, Annals Prob., 7, 29-54 (1979).

[3] Billingsley, P., Probability and Measure, Second Edition, Wiley, 1986.

[4] Dudley, R.M., Real Analysis and Probability, Wadsworth, Belmont, Califronia (1989).

[5] Dudley, R.M. and Philipp, W., Invariance principles for sums of Banach space valued
random elements and empirical processes, Z. Wahrscheinlichkeitatheorie Verw. Geb.,

62, 509-552 (1983).

[6] Eberlein, E., On strong invariance principles under dependence assumptions, Annals

Prob., 14, 260-270 (1986).

[7] Eberlein, E., Strong approximation of continuous time stochastic processes, J. Multi-

variate Anal., 31, 220-235 (1989).

[8] Monrad, D. and Philipp, W., The problem of eml]edding vector-valued martingales in

a Gaussian process, (preprint).

[9] Morrow, G.J. and Philipp, W., An almost sure invariance principle for Hilbert space

valued martingales, Trans. AMS, 273, 231-251 (1982).

[10] Philipp, W., Invariance principles for independent and weakly dependent random vari-

ables, in Dependence in Probability and Statistics, 225-268, E. Eberlein and M.S. Taqqu,

eds., Birkhiuser, Boston (1986).

[11] Philipp, W., A note on the almost sure approximation of weakly dependent random

variables, Monatsh. Math., 102, 227-236 (1986).

[12] Strassen, V., Almost sure behavior of sums of independent random variables and

martingales, Proc. Fifth Berkeley Symp. Math. Stat. Prob. Vol. II, Part 1, 315-343

(1967).

[13] Yosida, K., Functional Analysis, Grundlehren, 123, Third edition, Springer Verlag,

N.Y. (1971).

Departments of Mathematics and Statistics
University of Illinois
Urbana, IL 61801

31



Technical Reports
Center for Stochastic Processes

Department of Statistics
University of North Carolina

Chapel Hill, NC 27599-3260

258. C. Houdr6, Linear Fourier and stochastic analysis, Apr. 89.

259. G. Kallianpur, A line grid method in areal sampling and its connection with some
early work of H. Robbins, Apr. 89. Amer. J. Math. Manag. Sct., 1989, to appear.

260. G. Kallianpur, A.G. Miamee and H. Niemi, On the prediction theory of two-parameter
stationary random fields, Apr. 89. 1. Mutttvartacte Anal., 32, 1990, 120-149.

261. I. Herbst and L. Pitt, Diffusion equation techniques in stochastic monotonicity and
positive correlations, Apr. 89.

262. R. Selukar, On estimation of Hilbert space valued parameters, Apr. 89. (Dissertation)

263. E. Mayer-Wolf, The noncontinuity of the inverse Radon transform with an application
to probability laws, Apr. 89.

264. D. Monrad and W. Philipp, Approximation theorems for weakly dependent random vectors
and Hilbert space valued martingales, Apr. 89.

265. K. Benhenni and S. Cambanis, Sampling designs for estimating integrals of stochastic

processes, Apr. 89.

266. S. Evans, Association and random measures, May 89.

267. H.L. Hurd, Correlation theory of almost periodically correlated processes, June 89.

268. 0. Kallenberg, Random time change and an integral representation for marked stoppingtimes, June 89. Probab. Th. Ret. Ftelds, accepted.

269. 0. Kallenberg, Some uses of point processes in multiple stochastic integration, Aug.

89.

270. W. Wu and S. Cambanis, Conditional variance of symmetric stable variables, Sept. 89.

271. J. Hijnheer, U-statistics and double stable integrals, Sept. 89.

272. 0. Kallenberg, On an independence criterion for multiple Wiener integrals, Sept. 89.

273. G. Kallianpur, Infinite dimensional stochastic differential equations with
applications, Sept. 89.

274. G.W. Johnson and G. Kallianpur, Homogeneous chaos, p-forms, scaling and the Feynman
integral, Sept. 89.

275. T. Hida, A white noise theory of infinite dimensional calculus, Oct. 89.

276. K. Benhenni, Sample designs for estimating integrals of stochastic processes, Oct.
89. (Dtssertatton)

277. I. Rychlik, The two-barrier problem for continuously differentiable processes, Oct.
89.

278. G. Kallianpur and R. Selukar, Estimation of Hilbert space valued parameters by the
method of sieves, Oct. 89.



278. G. Kallianpur and R. Selukar, Estimation of Hilbert space valued parameters by the

method of sieves, Oct. 89.

279. G. Kallianpur and R. Selukar, Parameter estimation in linear filtering, Oct. 89.

280. P. Bloomfield and H.L. Hurd, Periodic correlation in stratospheric ozone time series,
Oct. 89.

281. J.M. Anderson, J. Horowitz and L.D. Pitt, On the existence of local times: a
geometric study, Jan. 90.

282. G. Lindgren and I. Rychlik, Slepian models and regression approximations in crossing

and extreme value theory, Jan. 90.

283. H.L. Koul, M-estimators in linear models with long range dependent errors, Feb. 90.

284. H.L. Hurd, Almost periodically unitary stochastic processes, Feb. 90.

285. M.R. Leadbetter, On a basis for 'Peaks over Threshold' modeling, Mar. 90.

286. S. Cambanis and E. Masry, Trapezoidal stratified Monte Carlo integration, Mar. 90.

287. H. Marques and S. Cambanis, Dichotomies for certain product measures and stable
processes, Mar. 90.

288. M. Maejima and Y. Morita, Trimmed sums of mixing triangular arrays with stationary
rows, Mar. 90.

289. S. Cambanis and M. Maejima, Characterizations of one-sided linear fractional L6vy
motions, Mar. 90.

290. N. Kono and M. Maejima, H61der continuity of sample paths of some self-similar stable
processes, Mar. 90.

291. M. Merkle, Multi-Hilbertian spaces and their duals, Mar. 90

292. H. Rbotz6n, M.R. Leadbetter and L. de Haan, Tail and quantile estimation for strongly
mixing stationary sequences, Apr. 90.

293. K. Benhenni and S. Cambanis, Sampling designs for estimating integrals of stochastic
processes using quadratic mean derivatives, Apl. 90.

294. S. Nandagopalan, On estimating the extremal index for a class of stationary
sequences, Apr. 90.

295. M.R. Leadbetter and H. Rootz6n, On central limit theory for families of strongly
mixing additive set functions, May 90.

296. W. Wu, E. Carlstein and S. Cambanis, Bootstrapping the sample mean for data from
general distribution, May 90.

297. S. Cambanis and C. Houdr6, Stable noise: moving averages vs Fourier transforms, May
90.

298. T.S. Chiang, C. Kallianpur and P. Sundar, Propagation of chaos and the McKean-Vlasov
equation in duals of nuclear spaces, Nay 90.

299. J.N.P. Albin, On the upper and lower classes for stationary Gaussian fields on
Abelian groups with a regularly varying entropy. June 90.


